Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Braz. j. biol ; 78(2): 281-288, May-Aug. 2018. tab, graf
Article in English | LILACS | ID: biblio-888879

ABSTRACT

Abstract Knowledge of specific enzyme activity, along with animal habits and digestive capacity is essential in formulating an appropriate diet for any species. In this study, we evaluated and characterized the activity of digestive enzymes present in the liver, intestine, and stomach of Paralichthys orbignyanus. The effects of pH and temperature on enzyme activity were also evaluated via the use of specific substrates. The use of specific substrates and inhibitors showed strong evidence of the presence of trypsin (BApNA= 0.51 ± 0.2 mU mg-1), chimotrypsin (SApNA= 2.62 ± 1.8 mU mg-1), and aminopeptidases (Leu-p-Nan =0.9709 ± 0.83 mU mg-1) in the intestine. Optimum pH for the activity of trypsin, chemotrypsin, leucino aminopeptidase, amilase, and pepsin were 9.5, 9.0, 8.0, 7.5, and 3.5, respectively, while optimum temperatures were 50, 50, 50, 40, and 45 °C, respectively. These results provide additional information regarding the biology of Brazilian flounder and can be used as a basis for further studies regarding fish feeding physiology.


Resumo O conhecimento da atividade enzimática é essencial para formular uma correta dieta específica para espécie, além de estarem correlacionadas com o hábito da alimentação e capacidade digestive. Neste estudo determinamos e caracterizamos a atividade enzimática presente no intestino, estômago e fígado do linguado Paralichthys orbignyanus. Os efeitos da temperatura e pH sobre a atividade enzimática também foram avaliados utilizando substratos específicos. O uso de substratos e inibidores específicos mostrou uma forte evidência da presença da tripsina (BApNA = 0,51 ± 0,2 mU mg-1), quimotripsina (SAPNA = 2,62 ± 1,8 mU mg-1), e as aminopeptidases (Leu-p-Nan = 0,97 ± 0,83 mU mg-1) no intestino. O pH ótimo observado para a atividade de tripsina, quimotripsina, leucino aminopeptidase, amilase e pepsina foi 9,5, 9,0, 8,0, 7,5 e 3,5, respectivamente. A temperatura ótima observada foi 50, 50, 50, 40 e 45 °C, respectivamente. Estes resultados fornecem informações adicionais sobre a biologia do linguado brasileiro e pode ser usado como base para novos estudos sobre fisiologia alimentar.


Subject(s)
Animals , Flounder/physiology , Fish Proteins/metabolism , Fish Proteins/chemistry , Gastrointestinal Tract/enzymology , Aminopeptidases/metabolism , Aminopeptidases/chemistry , Temperature , Enzyme Stability , Brazil , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Hydrogen-Ion Concentration , Liver/enzymology
2.
Biomédica (Bogotá) ; 37(supl.1): 121-132, abr. 2017. graf
Article in Spanish | LILACS | ID: biblio-888518

ABSTRACT

Resumen Introducción. El virus del Zika (ZIKV) es un flavivirus con envoltura, transmitido a los seres humanos principalmente por el vector Aedes aegypti. La infección por ZIKV se ha asociado con un gran neurotropismo y con efectos neuropáticos, como el síndrome de Guillain-Barré en el adulto y la microcefalia fetal y posnatal, así como con un síndrome de infección congénita similar al producido por el virus de la rubéola (RV). Objetivo. Comparar las estructuras moleculares de la proteína de envoltura E del virus del Zika (E-ZIKV) y de la E1 del virus de la rubéola (E1-RV), y plantear posibles implicaciones en el neurotropismo y en las alteraciones del sistema nervioso asociadas con el ZIKV. Materiales y métodos. La secuencia de aminoácidos de la proteína E-ZIKV (PDB: 5iZ7) se alineó con la de la glucopreteína E1 del virus de la rubéola (PDB: 4ADG). Los elementos de la estructura secundaria se determinaron usando los programas Vector NTI Advance®, DSSP y POSA, así como herramientas de gestión de datos (AlignX®). Uno de los criterios principales de comparación y alineación fue la asignación de residuos estructuralmente equivalentes, con más de 70 % de identidad. Resultados. La organización estructural de la proteína E-ZIKV (PDB: 5iZ7) fue similar a la de E1-RV (PDB: 4ADG) (70 a 80 % de identidad), y se observó una correspondencia con la estructura definida para las glucoproteínas de fusión de membrana de clase II de los virus con envoltura. E-ZIKV y E1-RV exhibieron elementos estructurales de fusión muy conservados en la región distal del dominio II, asociados con la unión a los receptores celulares de entrada del virus de la rubéola (glucoproteína de mielina del oligodendrocito, Myelin Oligodendrocyte Glycoprotein, MOG), y con los receptores celulares Axl del ZIKV y de otros flavivirus. Conclusión. La comparación de las proteínas E-ZIKV y E1-RV es un paso necesario hacia la definición de otros factores moleculares determinantes del neurotropismo y la patogenia del ZIKV, el cual puede contribuir a generar estrategias de diagnóstico, prevención y tratamiento de las complicaciones neurológicas inducidas por el ZIKV.


Abstract Introduction: Zika virus (ZIKV) is an enveloped flavivirus transmitted to humans mainly by Aedes aegypti. ZIKV infection has been associated with high neurotropism and neuropathic effects such as the Guillain-Barré syndrome in adults, and fetal and postnatal microcephaly and the congenital Zika virus syndrome similar to that produced by rubella virus (VR). Objective: To compare Zika virus membrane protein E (E-ZIKV) and rubella virus membrane protein E1 (E1-RV), and to propose possible implications for neurotropism and nervous system disorders associated with ZIKV infections. Materials and methods: The amino acid sequence of E-ZIKV protein (PDB: 5iZ7) was aligned to that of rubella virus glycoprotein E1 (PDB: 4ADG). The secondary structure elements were determined using the programs Vector NTI Advance®, DSSP, and POSA, and integrated data management tools (AlignX®). One of the main comparison and alignment criteria was the allocation of structurally equivalent residues with more than 70% identity. Results: E-ZIKV structural organization (PDB: 5iZ7) was similar to that of E1-RV (PDB: 4ADG) (70%-80% identity), and it was consistent with relevant structural features of viral membrane class II fusion glycoproteins. E-ZIKV and E1-RV exhibited highly conserved fusion structural elements at the distal region of domain II, which has been associated with the RV myelin oligodendrocyte glycoprotein and Axl cell receptors in ZIKV and other flaviviruses. Conclusion: The comparison of E-ZIKV and E1-RV proteins constitutes an essential step towards the definition of ZIKV neurotropism and pathogenesis molecular determinants, and for the adoption of diagnosis, prevention and treatment strategies against neurological complications induced by ZIKV infection.


Subject(s)
Humans , Viral Proteins/chemistry , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Viral Envelope Proteins/metabolism , Zika Virus/chemistry , Measles virus/chemistry , Viral Proteins/physiology , Viral Proteins/genetics , Zika Virus/physiology , Zika Virus/pathogenicity , Measles virus/physiology , Measles virus/pathogenicity , Molecular Biology
3.
Biomédica (Bogotá) ; 37(1): 131-140, ene.-feb. 2017. graf
Article in Spanish | LILACS | ID: biblio-888451

ABSTRACT

Resumen Introducción: El dengue es una enfermedad causada por uno de los cuatro serotipos del virus del dengue (DENV) y es endémica en, aproximadamente, 130 países. Su incidencia ha aumentado notablemente en las últimas décadas, así como la frecuencia y la magnitud de los brotes. A pesar de los esfuerzos, no existen tratamientos profilácticos ni terapéuticos contra la enfermedad y, en ese contexto, el estudio de los procesos que gobiernan el ciclo de infección del DENV es esencial para desarrollar vacunas o terapias antivirales. Una de las moléculas del DENV más prometedoras es la proteína no estructural 3 (NS3), la cual es indispensable para la replicación viral y es uno de los principales blancos inmunológicos durante la infección. Objetivo: Producir anticuerpos policlonales para contribuir a los futuros estudios sobre las interacciones entre la proteína NS3 y otras proteínas celulares. Materiales y métodos: Se expresaron dos proteínas recombinantes del dominio helicasa de NS3 del DENV de serotipo 2, las cuales se emplearon para inmunizar ratas y producir anticuerpos policlonales. Resultados: Los anticuerpos producidos fueron útiles en ensayos de Western blot e inmunofluorescencia y se reportó por primera vez un anticuerpo policlonal anti-NS3 que permitió la inmunoprecipitación de la proteína viral y la detecta con Western blot sin necesidad de inducir sobreexpresión de NS3 o de usar extractos de células marcados metabólicamente con radioisótopos. Conclusión: Las proteínas recombinantes expresadas y los anticuerpos producidos constituyen herramientas valiosas para estudiar procesos infecciosos del DENV que involucren a la proteína NS3 y evaluar pruebas dirigidas a interferir las funciones de esta proteína.


Abstract Introduction: Dengue is a disease caused by one of four serotypes of the dengue virus (DENV) and is endemic in approximately 130 countries. The incidence of dengue has increased dramatically in recent decades, as well as the frequency and magnitude of outbreaks. Despite all efforts, there are no prophylactic or therapeutic treatments for the disease. Accordingly, research on the processes governing the DENV infection cycle is essential to develop vaccines or antiviral therapies. One of the most attractive DENV molecules to investigate is nonstructural protein 3 (NS3), which is essential for viral replication and a major immune target for infection. Objective: To produce antibodies to support future studies on NS3 and its cellular interactions with other proteins. Materials and methods: Two recombinant proteins of the helicase domain of DENV NS3 serotype 2 were expressed, and used to immunize mice and produce polyclonal antibodies. Results: The antibodies produced were useful in Western blot and immunofluorescence tests. We report an NS3 antibody that immunoprecipitates the viral protein and detects it in Western blot with no need to over-express it or use cell extracts with metabolic radiolabeling.


Subject(s)
Animals , Humans , Mice , Virus Replication/physiology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Dengue/virology , Dengue Virus/immunology , Antibodies, Viral/immunology , Virus Replication/genetics , Virus Replication/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry , Blotting, Western , Viral Nonstructural Proteins/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Helicases/chemistry , Antibodies, Viral/metabolism , Antibodies, Viral/chemistry
4.
Mem. Inst. Oswaldo Cruz ; 109(1): 38-50, 02/2014. tab, graf
Article in English | LILACS | ID: lil-703647

ABSTRACT

Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen.


Subject(s)
Animals , Cattle , Flavivirus/chemistry , RNA, Viral/isolation & purification , Rhipicephalus/virology , Viral Nonstructural Proteins/chemistry , Brazil , Conserved Sequence/genetics , Flavivirus/classification , Flavivirus/isolation & purification , Gene Library , Hydrophobic and Hydrophilic Interactions , Phylogeny , Polymerase Chain Reaction , RNA Helicases/chemistry , Sequence Alignment/statistics & numerical data , Sequence Analysis, Protein/methods , Serine Endopeptidases/chemistry , Tissue Extracts/analysis , Transcriptome/genetics
5.
Article in English | IMSEAR | ID: sea-110501

ABSTRACT

BACKGROUND: SEVA TB Excretory secretory-31 (ES-31) antigen, a glycoprotein isolated from M. tb H37Ra culture filtrate, was found to be useful in the serodiagnosis of pulmonary tuberculosis (TB), extrapulmonary TB and in HIV-TB coinfection. Further, it has been shown to be a zinc containing serine protease. AIM: To isolate and purify SEVA TB ES-31 antigen from M. tb H37Ra culture filtrate and study of its enzyme properties and peptide sequence. METHODS: ES-31 antigen was purified from culture filtrate of M. tuberculosis H37Ra strain by ammonium sulphate precipitation, SDS-PAGE fractionation and FPLC. Protease activity of ES-31 antigen was studied using azocasein as substrate. ES-31 antigen was further fractionated by two dimensional polyacrylamide gel electrophoresis (2D PAGE) followed by LCMS-T analysis. RESULTS: Mycobacterial metallo-serine protease was purified 3096 fold from M. tb H37Ra culture filtrate protein. Purified enzyme showed optimum activity at pH 7.0 at 37 degrees C. Of the four substrates explored, the enzyme has shown maximum activity with azocasein and had a Km value of 0.01 mM with specific activity of 6250 x 10(-6) U/mg protein. Further, analysis of ES-31 antigen by 2D PAGE showed two protein spots (A and B). CONCLUSION: Kinetic studies on SEVA TB ES-31 protein, an immunogen with metallo serine protease activity are reported for the first time. Purified enzyme had a Km value of 0.01 mM with azocasein as substrate. Further, study on structure and biological role of serine protease will be of interest.


Subject(s)
Antigens, Bacterial/chemistry , Antigens, Bacterial/isolation & purification , Antigens, Bacterial/metabolism , Biomarkers/analysis , Biomarkers/metabolism , Cell Culture Techniques , Electrophoresis, Gel, Two-Dimensional , Humans , Mass Spectrometry , Mycobacterium tuberculosis/immunology , Serine Endopeptidases/chemistry , Serine Endopeptidases/isolation & purification , Serine Endopeptidases/metabolism , Serologic Tests/methods , Tuberculosis/diagnosis , Tuberculosis/immunology
6.
Braz. j. med. biol. res ; 41(1): 12-17, Jan. 2008. graf
Article in English | LILACS | ID: lil-469981

ABSTRACT

A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13 percent of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg) and fibrinogen (minimum coagulant dose = 4.2 µg) in vitro, and promotes defibrin(ogen)ation in vivo (minimum defibrin(ogen)ating dose = 1.0 µg). In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.


Subject(s)
Animals , Mice , Blood Coagulation , Bothrops , Coagulants/isolation & purification , Crotalid Venoms/enzymology , Serine Endopeptidases/isolation & purification , Amino Acid Sequence , Antivenins/therapeutic use , Blood Coagulation/drug effects , Chromatography, Agarose , Chromatography, Ion Exchange , Costa Rica , Coagulants/administration & dosage , Coagulants/pharmacology , Drug Evaluation, Preclinical , Fibrinogen/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/pharmacology , Snake Bites/physiopathology , Thrombin/chemistry
7.
Experimental & Molecular Medicine ; : 36-43, 2006.
Article in English | WPRIM | ID: wpr-77903

ABSTRACT

Serine protease activity of high temperature requrement 2 (HtrA2) is essential for promoting cell death, as well as for protecting against cellular stresses. An X-ray crystallographic study described the formation of a pyramid shaped homotrimer that is a proteolytically competent form of HtrA2; however, little is known about effects of the trimeric structure of HtrA2 on the natural substrates. In this study, we generated the HtrA2 protein that has a single point mutation at the homotrimerization motif to assess relationship between structure and the proteolytic activity of HtrA2 on its substrates. Using gel filtration, a native gel electrophoresis system, and a co-precipitation assay, we confirm that phenylalanine 149 in HtrA2 is a crucial determinant for the formation of the HtrA2 homotrimeric structure. Moreover, we described that the HtrA2 monomeric form abolished not only autoproteolytic activity, but also the proteolytic activity against XIAP (X-linked inhibitor of apoptosis protein) known as the HtrA2 substrate. Taken together, the results indicate that the homotrimeric structure of HtrA2 is required for executing its serine protease activity.


Subject(s)
Alanine/metabolism , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Cell Line , Chromatography, Gel , Crystallography, X-Ray , Escherichia coli/genetics , Glutathione Transferase/metabolism , Hydrolysis , Molecular Sequence Data , Phenylalanine/metabolism , Point Mutation , Precipitin Tests , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Serine Endopeptidases/chemistry , Structure-Activity Relationship , Transfection
8.
The Korean Journal of Parasitology ; : 189-196, 2003.
Article in English | WPRIM | ID: wpr-49270

ABSTRACT

In order to evaluate the possible roles of secretory proteases in the pathogenesis of amoebic keratitis, we purified and characterized a serine protease secreted by Acanthamoeba lugdunensis KA/E2, isolated from a Korean keratitis patient. The ammonium sulfate-precipitated culture supernatant of the isolate was purified by sequential chromatography on CM-Sepharose, Sephacryl S-200, and mono Q-anion exchange column. The purified 33 kDa protease had a pH optimum of 8.5 and a temperature optimum of 55 degrees C. Phenylmethylsulfonylfluoride and 4- (2- Aminoethyl) -benzenesulfonyl-fluoride, both serine protease specific inhibitors, inhibited almost completely the activity of the 33 kDa protease whereas other classes of inhibitors did not affect its activity. The 33 kDa enzyme degraded various extracellular matrix proteins and serum proteins. Our results strongly suggest that the 33 kDa serine protease secreted from this keratopathogenic Acanthamoeba play important roles in the pathogenesis of amoebic keratitis, such as in corneal tissue invasion, immune evasion and nutrient uptake.


Subject(s)
Animals , Humans , Acanthamoeba/enzymology , Acanthamoeba Keratitis/parasitology , Cornea/parasitology , Hydrogen-Ion Concentration , Korea , Serine Endopeptidases/chemistry , Substrate Specificity , Temperature , Virulence Factors
9.
Indian J Biochem Biophys ; 2001 Feb-Apr; 38(1-2): 34-41
Article in English | IMSEAR | ID: sea-27272

ABSTRACT

For the first time, it is demonstrated that exposure of an enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes, namely, proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin were exposed to acetonitrile at 70 degrees C for three hr. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, proteinase K was analyzed in detail using X-ray diffraction method. The overall structure of the enzyme was found to be similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad remained intact after the treatment. However, the water structure in the substrate binding site underwent some rearrangement as some of the water molecules were either displaced or completely absent. The most striking observation concerning the water structure was the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules were located in the recognition site. Interlinked through water molecules, the sites occupied by acetonitrile molecules were independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu 96, Ile 107 and Leu 133. The development of such a hydrophobic environment at the recognition site introduced a striking conformation change in Ile 107 by rotating its side chain about C alpha-C beta bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar change had earlier been observed in proteinase K when it was complexed to a substrate analogue, lactoferrin fragment.


Subject(s)
Acetonitriles/chemistry , Acid Phosphatase/metabolism , Catalysis , Chymotrypsin/metabolism , Crystallography , Endopeptidase K/metabolism , Hot Temperature , Kinetics , Models, Molecular , Protein Binding , Protein Conformation , Protein Structure, Secondary , Serine Endopeptidases/chemistry , Solvents , Temperature , Trypsin/metabolism , X-Ray Diffraction , alpha-Amylases/metabolism , beta-Glucosidase/metabolism
10.
Experimental & Molecular Medicine ; : 47-51, 1999.
Article in English | WPRIM | ID: wpr-186197

ABSTRACT

A heterozygous GTG to ATG (Val297Met) mutation was detected in a patient with inherited protein C deficiency and deep vein thrombosis. Cosegregation of the mutation with protein C deficiency was observed through a family pedigree study. Molecular models of the serine protease domains of wild type and mutant protein C were constructed by standard comparative method. Val 297 was found to be located in the hydrophobic core of the protein. Although the substitution of Met for Val does not greatly alter the hydrophobicity of the protein, it introduces a bulkier side chain, which yields steric hindrance between this residue and adjacent residues, such as Met364, Tyr393, Ile321, Ile323, and Val378. It seems that the Met can not fit into the tight packing into which it is trapped, thereby probably inducing misfolding and/or greater instability of the protein. Such misfolding and/or instability thereby eventually disturbs the catalytic triad, in consistent with the observed type I deficiency state.


Subject(s)
Adult , Female , Humans , Male , Base Sequence , Middle Aged , Models, Molecular , Molecular Sequence Data , Pedigree , Point Mutation , Polymerase Chain Reaction/methods , Protein C/genetics , Protein C/chemistry , Protein C Deficiency/genetics , Protein Conformation , Serine Endopeptidases/genetics , Serine Endopeptidases/chemistry , Venous Thrombosis/genetics
11.
Experimental & Molecular Medicine ; : 64-69, 1999.
Article in English | WPRIM | ID: wpr-56736

ABSTRACT

Leader peptidase is a novel serine protease in Escherichia coli, which catalyzes the cleavage of amino-terminal signal sequences from exported proteins. It is an integral membrane protein containing two transmembrane segments with its carboxy-terminal catalytic domain residing in the periplasmic space. Recently, the x-ray crystal structure of signal peptidase-inhibitor complex showed that Asp 280, a highly conserved consensus sequence of E. coli leader peptidase is the closest charged residue in the vicinity of two catalytic dyad, Ser 90 and Lys 145, and it is likely held in place by a salt bridge to Arg 282. Possible roles of Asp 280 and Arg 282 in the structure-catalytic function relationship were investigated by the site-directed mutagenesis of Asp 280 substituted with alanine, glutamic acid, glycine, or asparagine and of Arg 282 with methionine. All of mutants purified with nickel affinity chromatography were inactive using in vitro assay. It is surprising to find complete lose of activity by an extension of one carbon units in the mutant where Asp 280 is substituted with glutamic acid. These results suggest that Asp 280 and Arg 282 are in a sequence which constitutes catalytic crevice of leader peptidase and are essential for maintaining the conformation of catalytic pocket.


Subject(s)
Aspartic Acid/chemistry , Bacterial Outer Membrane Proteins/metabolism , Blotting, Western , Escherichia coli/enzymology , Escherichia coli/chemistry , Micrococcal Nuclease/metabolism , Mutagenesis, Site-Directed , Oligonucleotides , Protein Precursors/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL